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ABSTRACT

Occasionally the prediction equation obtained by conventional

regression techniques is an unsatisfactory predictor because of its

behavior over segments of the range of the independent variable(s).

For such situations, a procedure is illustrated which has been

found to yield a "better fit" than that obtained by conventional

regression analysis. The procedure consists of segmenting the

levels of the independent variable(s) into blocks and separately

fitting each block. The separate fits, however, are obtained

simultaneously and the end result is a single prediction equation.

Numerical examples are given typifying regression analysis problems

encountered in which the proposed procedure yields a "better fit".

In each example, the proposed procedure of blocking in regressioni
analysis is compared with conventional regression analysis. Extensions

in tLhe application of blocking in prediction problems and in

comparative problems are briefly discussed.
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I. INTRODUCTION

Thr principle of blocking in designed experiments conducted for

comparative analysis purposes, namely the analysis of variance, is well

established. However, the principle of blocking in experiments conducted

[ for prediction purposes does not appear to be fully utilized. Indeed,

a physical situation dictates the same restrictions upon experimentation

conducted for prediction purposes as for comparative analysis purposes.

That is, just as the analysis of variance is determined by the design of

the experiment so should regression analysis be determined by the design

of the experiment. In addition to the design of an experiment, another

source of motivation for blocking in regression analysis is the demand

from the experimenter for a "better fit". Often an experimenter's sole

objective is to find a mathematical expression that "sufficiently fits"

his data. That is, he is not interested in testing hypotheses concerning

I ~ the parameters of some hypothesized model; instead, he is interested in

the behavior of a mathematical function over a given range of the independent

variable(s). This latter source of motivation initiated this report,

and its objective is to illustrate the application of blocking by employing

dunuy variables in regression analysis to achieve a better fit than that

obtained by conventional regression analysis.

I The use of a dummy variable in regression analysis is not new. Many

authors attach a dummy variable, which always takes the value of unity, to

the constant (B0) for notational convenience, especially when using

matrix notation. Therefore, no pretension is made to the originality of

using dummy variables in regression analysis; instead, an attempt is made
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to extend the use of dummy variables in regression analysis. Likewise,

the principle of blocking in regression analysis is not new; however, it

has received surprisingly little attention in recent literature.

Suits (1957) uses dummy variables in regression analysis of independent

variables which are partitioned (blocked) into mutually exclusive qualitative

classifications. Klopfenstein (1964) stresses the utility of segmenting

data in his discussion of the solution of the least squares approximation

problem subject to a class of constraint conditions. Draper and Smith

(1966) fit two linear trends to data which has been segmented into two

blocks and illustrate the two cases of known and unknown point of intersection

of the two trends. Smillie (1966) uses duumy variables to introduce

qualitative variables into a regression function and gives a numerical

example having a qualitative factor with two levels. The author of this

report feels that a need exists for a more thorough exemplification of

the utility of blocking in regression analysis than that illustrated in

the current literature.

II. BACKGROUND

Knowledge of conventional regression analysis is assumed; therefore,

neither the historical background nor the theory of regression analysis

is discussed in detail. Instead, only definitions and/or explanation;

are given of the terminology and notation used later in the report.

In predict ion problems concerning regression analysis involving

a single dependent or response variable (y) and N independent variables



i I

(xl•%a, ,xN), the response variable is assumed to be normally

distributed about the "true" response function (V) with common variance

a2 , where

§= *(xl ,x,...,xN) (1)

is linear in the parameters.

The objective is to determine a prediction equation which "fits"

the given data with a prescribed degree of precision. This is accomplished

by using a postulated model,

y = f;(xl x,,xN) + e, (2)

to estimate 1, where e is a random error. Assuming the general multiple

linear regression model to be the postulated model, equation (2) is of

the form

S~Y = 0 + 01 X1 + 0242 + .. + O~xR + e,11

where

y * the dependent variable

xv the vth independent variable; v 1,2,...,N

o• a constant

- the "true" partial regression coefficient of x.; v -IN

e • a random error.

Some of the independent variables may not be actually observed variables;

for example. xz may equal x0, Kx, may equal xIx&, and so forth. In

particular, in the case of a single independent variable (x), the postulated

3



model may be an Nth order polynomial and equation (3) becomes

y = 0 + Ix + 6X+ "'" + ONxN + e. (4)

Applying the least squares principle by m4.nimizing the sum of

squares of the deviations between the observed yt values and the Y,

predictions yields unbiased estimates of the parameters of equation (3),

where

Y= bo + bzxIt + b2 x2 t + + bNxNt; 1 1,2,...,n, (5)

and where n is the number of observed dependent variable values.

Concerning the distribution of the random errors (et), the usual

assumptions of normally and independently distributed random errors with

mean zero and variance o" are assumed throughout the following discussion

without further coument. For a complete discussion of the assumptions,

see for example, Anderson and Bancroft. (1952), Hald (1952), Bennett and

Franklin (1954), or Joht'son and Leone, Volume I (1964).

Criteria for Judging the "goodness of fit" of a prediction equation

are (or certainly should be) determined by the intended use of the prediction

equation. Some of t'e more common criteria are based on the magnitude of

the Coefficient of Multiple Determination (R2), where Rt is the Multiple

Correlation Ccefficient; significance test of the 'lack of Fit"; and the

magnitude uf the residuals, e. v y.-Y. or W, a jj-Yj. These criteria

are used directly or indirectly in the NMUIECAL EXAMPLIS Section where

comparisons are, made of blocking in regression analysis with conventional

* regression analysis.

S~4



III. NUMERICAL EXAMPLES

1. One Curvilinear Trend and One Linear Trend

Consider an experiment in which a single response was observed from

each of 17 fixed levels of a given independent variable. The objective

of the experiment was to determine a simple prediction equation (one containing

as few terms as possible) for the response variable. For acceptance of a

prediction equation, the residuals were to be within a prescribed tolerance,

i.e., y-Yt"Y5 6; i = 1,2,...,17. The "true" response function was known to

be monotonically increasing throughout the range of the independent

variabl'. Additionally, the rate of change of the response function was

increasing over a portion of the range of the independent variable, while

the rate of change was nearly constant for the remainder of the range of

the independent variable. The data was as follows.

Independent Variable (x). Dependent Variable (y)

x x Ix v

1 0 7 37 13 51
2 1 8 40 14 51
3 6 9 43 15 55
4 10 10 43 16 56
5 18 11 46 17 59
6 28 12 47

Least squares polynomials of increasing order were determined in the

conventional manner. Prediction equations of the 8th order and Less

failed to satisfy the specified tolerance. In addition, a prediction

equation having more than live or six terms would have been impractical

f,,r tlw intended use of the 3rediction equation.
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An examination of a plot of the data suggested that the transition

from increasing to constant rate of change was between levels 6 and 8 of

the independent variable. Therefore, the independent variable was segmented

into two blocks, the first being from 1 through 7 and the second from 8

through 17. Constant, linear, and quadratic terms were fitted for the first

block, and a linear term was fitted for the second block.

Before discussing the blocking procedure, the construction of the

design matrix is briefly discussed. In the design matrix of TABLE I, x,

and x, refer to the first block, x2 refers to the second block, and x3

represents the difference between the blocks. In the first block the

elements of the x1 -column take the values of the original independent variable,

and in the second block the elements of the x1 -column take the first value

of the original independent variable in the second block. The elements

of the x,-column are the squares of the elements in the xl-column. In

the first block, the elements of the x2 -column take a zero; in the second

block, they take the value of tae original independent variable minus the

first value of the original indeperient variable in the second block. The

'elements of the x3 -column are assigned a zero in the first block and

assigned a one in the second block.

Note that the design matrix explained above and illustrated in

TABLE I is not the only design matrix that could have been used. That

is, the analyst is permitted flexibility in the construction of the design

matrix. The elements of the columns referring to the blocks could have

represented transformed or scaled values of the original independent variable.

Similarly, the zero's and one's in the x.-column could have been assigned

differently. Naturally, a change In the construction of the design matrix

changes the interpretation of the estimated regression coefficients.

6i



TMBLE I

DESIGN NATR2X AND RESPONSS DATA

Indep. Var.
Index (i) x x1e xe x3 y

1 1 1 0 0 0

2 2 2 4 0 0 1
B

3 3 L 3 9 0 0 6
0

4 4 C 4 16 0 0 10
K

5 5 5 25 0 0 18
I

6 6 6 36 0 0 28

7 7 7 49 0 0 37

8 8 8 64 0 1 40

9 9 8 64 1 1 43

10 10 8 64 2 1 43

11 1 B 8 64 3 1 46

L121 0 8 64 4 1 4712 02

13 13 K 8 64 5 1 51

14 14 8 64 6 1 51

15 15 8 64 7 1 55

16 16 8 64 8 1 56

17 17 8 64 9 1 59

I
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Four degrees of freedom were used for regression when blocking.

Therefore, the 4 th order prediction equation, Y(C), obtained in the

0 •conventional manner is compared with the prediction equation, Y(B),

obtained by blocking. The two prediction equations are:

Y(C) - - 0.2115 - 3.0124x + 2.3254x2 - 0.2169x3 + O.0061x 4

Y(B) = - 0.5714 - 0.6310xl + 0.8690x? + 2.0667x2 - lO.2000x3

The MS(Lack of Fit) has been reduced by one-sixth as can be seen

in the following AMOVA TABLE.

ANOVA TABLE

CONVENTIONAL BLOCKING
Source DF SS MS SS MS

Regression 4 6472.249 1618.062 6525.430 1631.358

Lack of Fit 12 62.810 5.234 9.629 0.802

Total 16 6535.059 6535.059

Figure 1 shows a plot of the data, the 4 th order Y(C), and Y(B).

The dashed portion of Y(B) between the two blocks illustrates the

interpretation of the regression coefficient of x3 . The estimated

regression coefficient (-10.2000) of x3 is the vertical shift between

the two trends of Y(B) at the first level of the second block. That

is, Y(B) given xl=8, xz=0, x3 =l minus Y(B) given x1=8, xa=0, x3 =0

equals -10.2000.

-i8
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A comparison of the residuals of Y(C) with the residuals of

Y(B) shows that the el(C) range from -2.86 to 4.21 while the e 1 (B)

range from -1.20 to 1.13, where e 1 (C) = yi-Yi(C) and el(B) = yi-Yi(D).

Figure 2 shows a comparison of the residuals.

I T
5

3

2 ..

10

•4 4
-2

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 2
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2. Two Curvilinear Trends

Consider another experiment in which 35 measured responses

were obtained from 16 fixed levels of an independent variable. Again,

the objective of the experiment was to obtain a simple prediction

equation for the response variable. In addition, the prediction

equation must possess certain characteristics, the most important

being that it yield non-negative predictions for dependent variable

values within the range of the experiment. Also, the true response

function was known to be unimodal, and was known to be monotonically

decreasing for increasing independent variable values to the right

of the stationary point. The data was as follows.

Independent Dependent
Variable (x) Variable (Y)

1.0 0.5 1.0 1.5
1.5 6.0 8.0
2.0 10.5 11.0 11.5
2.5 12.0 13.0 14.0
3.0 14.0 15.5
3.5 15.0 16.0
4.0 15.0 16.0 17.0
4.5 15.0 15.0 16.0
5.0 13.5 15.5
5.5 10.5 11.0 11.0
6.0 6.0 8.0
7.0 4.0 4.5
8.0 2.5 3.0

10.0 1.5
15.0 0.7
20.0 0.1

I,
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Least squares fits were performe'd in the conventional manner,

obtaining polynomial expressions in the independent variable. Prediction

equations of the 9th order and less were found to be unsatisfactory

predictors. All curvilinear prediction equations yielded some negative

predictions corresponding to x-values within the range of the experiment.

An examination of a plot of the data showed that in the range of

1I to 6 of the independent variable, the response trend was curvilinear

and concave downward. But in the range of 6 to 20, the response trend

was curvilinear, concave upward, and asymptotic to the x-axis as x

increased. That is, the first trend appears as a portion of a parabola

opening downward, while the second trend appears as a portion of a

parabola opening to the right. Therefore, the independent variable was

segmented into two blocks. For the first block linear and quadratic

terms were included, and for the second block linear and square root

terms were included. The design matrix is shown in TALE II.

Because five degrees of freedom were used for regression when

blocking, the 5 th order prediction equation, Y(C), obtained in the

conventional manner is compared with V(B) obtained by blocking:

Y(C) - 20.2869 + 26.9623x - 6.8518x2 + 0.7012x*3 
- 0.0319x4 + O.O005x"

Y(B) r - 10.8405 , 14.2910xi - 1.8808x0 + 0.1773x - 1.7921/A2 + 7.2348x3

12



TABLE II

DISIGN MATRIX AND RESPONSE DATA

Indep. Var.
Index (i) x x1 x? Y AX X3 y

1 1.0 1.0 1.00 0 0 0 0.5 1.0 1.5

2 i.5 1.5 2.25 0 0 0 6.0 8.0

3 2.0 2.0 4.00 0 0 0 10.5 11.0 11.5

4 2.5 2.5 6.25 0 0 0 12.0 13.0 14.0
B

5 3.0 L 3.0 9.00 0 0 0 14.0 15.5
0

6 3.5 C 3.5 12.25 0 0 0 15.0 16.0
K

7 4.0 4.0 16.00 0 0 0 15.0 16.0 17.0
I

8 4.5 4.5 20.25 0 0 0 15.0 15.0 16.0

9 5.0 5.0 25.00 0 0 0 13.5 15.5

10 5.5 5.5 30.25 0 0 0 10.5 11.0 11.0

11 6.0 6.0 36.00 0 0 0 6.0 8.0

i~l12 7.0 7.0 49.00 0 0 1 4.0 4.5

13 8.0 L 7.0 49.00 1 1 1 2.5 3.0
0

14 10.0 C 7.0 49.00 3 1.732 1 1.5
K

15 15.0 7.0 49.00 8 2.828 1 0.7

16 20.0 7.0 49.00 13 3.606 1 0.1

13
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A comparison of the "Lack of Fit" of Y(C) and Y(B) can be seen

from the ANOVA TABLE below. The MS[Lack of Fit of Y(B)] is approximately

one-fifth as large as the MS[Lack of Fit of Y(C)]. If a test were

performed, the MStLack of Fit of Y(C)] would be found to be significant

at the 0.01-level of significance, while the MSELack of Fit of Y(B)] is

obviously not significant.

ANOVA TABLE

CONVENTIONAL BLOCKING
Source DF SS MS SS MS

Regression 5 1037.961 207.592 1065.681 213.136

Lack of Fit 10 34.407 3.441 6.687 0.669

Within 19 13.708 0.721 13.708 0.721

Total 34 1086.076 1086.076

Figure 3 shows a plot of the data and the two prediction equations.

Note that Y(C) yields negative values at x - 10,11,12,17,18,19. This,

in addition to being a "poor fit" at x a 10, illustrates the danger of

interpolation when the levels of the independent variable are unequally

weighted and/or nonequidistant. Again, the estimated regression

coefficient (7.2348) of x3 is the vertical shift between the two trends

of Y(B) at the first level of the second block. Figure 3 also contains

a plot of the T. , y ,-y differences, i.e., uI(C) a Y,-Yt(C) and

W1(8) - Y, -Yt (B). These differences along with their corresponding

predicted values are tabulated in TABLE III which shohs the range of

u.(C) to be -2.08 to 1.89, while the range of Wt(B) is -0.64 to 0.91.

14
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TABLE III

PREDICTED VALUES AND RESIDUALS

i Y, ( C) YI(B) i1 (c) F, (B)

1 1.0 1.00 0.49 1.57 0.51 -0.57

2 1.5 7.00 6.95 6.36 0.05 0.64

3 2.0 11.00 11.35 10.22 -0.35 0.78

4 2.5 13.00 14.06 13.13 -1.06 -0.13

5 3.0 14.75 15.41 15.11 -0.66 -0.36

6 3.5 15.50 15.70 16.14 -0.20 -0.64

7 4.0 16.00 15.19 16.23 0.81 -0.23

8 4.5 15.33 14.09 15.38 1.24 -0.05

9 5.0 14.50 12.61 13.59 1.89 0.91

10 5.5 10.83 10.89 10.87 -0.06 -0.04

11 6.0 7.00 9.08 7.20 -2.08 -0.20

12 7.0 4.25 5.60 4.27 -1.35 -0.02

13 8.0 2.75 2.75 2.66 0.00 0.09

14 10.0 1.50 -0.16 1.70 1.66 -0.20

15 15.0 0.70 0.97 0.62 -0.27 0.08

16 20.0 0.10 0.07 0.12 0.03 -0.02

16



3. Three Linear Trends

This numerical example illustrates an extension of the blocking

principle to three blocks. The hypothetical example is for demonstration

of the procedure instead of comparison of blocking with conventional

regression analysis. Therefore, results are presented, and the comparison

is left to the reader. The data is as follows.

Independent Variable (x). Dependent Variable (v)

x x y xy

1 3.5 8 7.0 15 4.5
2 4.5 9 7.0 16 5.5
3 4.5 10 7.5 17 6.0
4 5.0 11 7.5 18 7.0
5 5.5 12 7.5 19 7.5
6 6.0 13 8.5 20 8.5
7 6.0 14 3.5 2' 9.5

As shown in TABLZ IV, the data is divided into three blocks

having seven, six, and eight levels, respectively.

17



TABLE IV

DESIGN MATRIX AND RESPONSE DATA

Indep. Var.
SIndex (i) x X1 X2 x4 xG y

1 1 1 0 0 0 0 3.5

2 2 2 0 0 0 0 4.5
B

3 3 L 3 0 0 0 0 4.5
0

4 4 C 4 0 0 0 0 5.0
K

5 5 5 0 0 0 0 5.5
I

6 6 6 0 0 0 0 6.0

7 7 7 0 0 0 0 6.0

8 8 8 0 0 1 0 7.0
B

9 9 L 8 1 0 1 0 7.0
0

10 10 C 8 2 0 1 0 7.5
K

11 11 8 3 0 1 0 7.5

12 12 8 4 0 1 0 7.5

13 13 8 5 0 1 0 8.5

14 14 8 6 0 1 1 3.5

15 15 8 6 1 1 1 4.5

16 16 B 8 6 2 1 1 5.5
L

17 17 0 8 6 3 1 1 6.0
C

18 18 K 8 6 4 1 1 7.0

19 19 I 8 6 5 1 1 7.5

20 20 8 6 6 1 1 8.5

21 21 8 6 7 1 1 9.5

18



The two prediction equations are:

Y(C) - 5.0589 - 1.5715x + 0.6116x2  0.06972 + 0.0031x' + 0.00005x5

Y(B) - 3.3571 + 0.4107x, + 0.2571x2 + 0.8214x3 + 0.2143x4 - 4.7750x5

The amount of variation "explained" by each prediction equation is

j! evidenced in the following ANOVA TABLE.

ANOVA TABLE

CONVENTIONAL BLOCKING
Source DF SS MS SS MS

Regression 5 40.124 8.025 55.005 11.001

Lack of Fit 15 15.662 1.044 0.781 0.052

Total 20 55.786 55.786

Figure 4 shows a plot of the data and the two prediction equations.

19
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IV. EXTENSION OF APPLICATION

1. Prediction Problems

The extension to K blocks is a straightforward generalization

of the illustrations in Section III. An independent variable (x) having

[ N levels may be segmented into K blocks as shown in UBLE V. The

number of levels of the independent variable in the jth block is Nj

K
where Z Ns = N. Considering only linear terms in each block, the

J=1

7 model is

K 2K-i
y 00 + E 04•x + Z Oxj, + e. (6)

J=- j'=K+l

The estimates, b3 ; j = 1,2,...,K, of the parameters of equations (6)

are the K slopes of the prediction equation; and the estimates,

bj, ; J' = K+l,K+2,...,2K-l, are the (K-I) vertical shifts between the

K blocks. Naturally if desired, higher order terms of the type,

8
K x•aj; j = 1,2,...,K; Kj = 1,2,...,Nj-l, may be included in thej

model of equation (6). Further, the author sees no obvious complication

in generalizing the above to multiple independent variables. The

generalization appears to be an extension of the multiple regression

approach to the analysis of variance illustrated by Brownlee (1960)

or Draper and Smith (1966).

21
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2. Comparative Problems

In addition to the application of blocking in prediction problem,

the procedure has application in the analysis of variance of both crossed

and nested clsusifications. As an example of the application in crossed

classifications, consider a siaple 2X2X2 classification. The ANOVA

model may be written as

y = ýk + aa + bp + cy + abao + acay + bcoy + abcao• + e. (7)

The corresponding REGRESSION model may be written as

7
y = 0 + Nyxv + e. (8)

Applying regression analysis by using the design matrix of TABLE VI

yields the analysis of variance for the three factor crossed classification.

TABLE V1

DESIGN MATRIX FOR A 2X2X2 CROSSED CLASSIFICATION

x X x. x4= X"= 30=
x1x2 xjX% yo xsxgx%

I I I 1. 1 l 1

1 1 2 1 2 2 2
1 2 1 2 1 2 2
1 2 2 2 2 4 4
2 1 1 2 2 1 2
2 1 2 2 4 2 4
2 2 1 4 2 2 4
2 2 2 4 ts 4 S

Note: TABLS VI is an illustration of blocking applied to three independent
variables (xj is segmented into two blocks, 3% is seuanted into two blocks
within each block of x,, and 3% is segmented into two blocks within each
block of xa).

The correspondence of the analysis of variance for the. models of

equations (7) and (8) is illustrated in the folloving table.

23



ANOVA SOURCE COWPARISON

ANOVA 1IDDL REGRESSION MODEL
SOURCE SOURCE DF

A Due to bil bo I

B Due to b1 bo , b, I

C Due to bl bo, bi,ba 1

AB Due to b4 lbo, bl, be, be 1

AC Due to b5sbo, bl, bg. b3 , b4  1

BC Due to balbo, b1 , bg, b3, b4, b5  1

ABC Due to b,1bo. bl, ba, b3, b,4 bs, be 1

For an illustration of the application of blocking in nested

classifications, consider a two factor experiment in which a three

level quantitative factor is nested within each of the three levels

of a qualitative factor. The data is displayed in TABLE VII.

TABLE VII

DATA T FOR A NESTED CLASSIFICATION

Factor A

1 ,,,2
Factor B within A

1 2 3 4 5 6 7 8 9
1 3 4 4 5 7 5 6 6
2 4 5 5 6 8 6 7 7

The ANDVA model may be written as

* y- + so + bg(g) + e. (9)

Factor A has (A-1) - 2 degrees of freedom; factor I(A) has (B-I)A - 6

degrees of freedom. Applying the usual AHOVA computational

procedures to the data in TABLE VII gives the folloving ANOVA IABLI.

2U



AMOVA TtIJL

Source D? SS HS

A 2 32.444 16.222

B(A) 6 20.000 3.333

Within 9 4.500 0.500

Total 17 56.944

Before applying the proposed blocking procedure, the regression

model corresponding to the ANOVA model of equation (9) is briefly

discussed. The terms within the regression model, and consequently

the columns of the design matrix, are arranged differently from the

arrangement used in the preceding sections of this paper. This

rearrangement of terms within the regression model is merely for

convenience so that the term referring to factor A precede the

term referring to factor B within A (as they appear in the ANOVA

model of equation (9)). That is, the set of (K-1) term represented

by the third term of equation (6) appears immediately after the constant

So. Consequently, the RKGRKSSI0N model is written as

y-00+ X+ +l 0X3 +46 S + (10)

Factor A Factor B within A

The design matrix corresponding to equation (10) is shown in 2AKU VIII.

The ANOVA resulting from application of the proposed blocking

procedure is given in the IGMMSIDN AXNVA UAIMI. Testing the three

parameters 18 pa, 052) of the quadratic term in equation (10) as

"Lack of fit", we conclude that the departure from linearity is not siLnif-

icant. That is, a prediction equation containing only linear term of the
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is= VIII

=JIM3 MTF•RII 0 A TMl LM MSlTD cASSIIICATI0N

1  X0 X8 34 X4 34 X6 4 y

3 0 0 1 1 0 0 0 0 1 2
L
01 0 0 2 4 0 0 0 0 3 4
C
K 0 0 3 9 0 0 0 0 4 5

5 1 0 4 16 0 0 0 0 4 5
L
0 I 1 0 4 16 1 1 0 0 5 6
C
K 1 0 4 16 2 4 0 0 7 8

3 1 1 4 16 3 9 0 0 5 6
L
0 111 1 1 4 16 3 9 1 1 6 7
C
K 1 1 4 16 3 9 2 4 6 7

quantitative factor "adequately fits" the data in TUNZ VII. The

resulting linear prediction equation is

Y - 0.1667 - 1.8333xz - 3.1667x+ + 1.5000% + 1.50034 + 0.5000%.

Source OF AS ..

bh& 2 32.44 16.222
1l 1 9.000 9.000
S0.s 1 0.333 0.333

S• 1 9.000 9.000
1Ia 1 0.333 0.333

bbI1 1.000 1.000
bsa 1 0.333 0.333
Within 9 4.500 O.500
Total 17 56.944

Figure 5 shows a plot of the prediction equation and Illustrate*

the interpretation of the estimated regression coefficients.
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Note that application of the proposed blocking procedure enabled

the simultaneous performance of an analysis of variance and a regression

analysis. That is, in addition to the usual analysis of variance, a

prediction equation was simultaneously determined.

In sumary, the procedure of blocking in regression by using

dumy variables provides the analyst such flexibility. This flexibility

is due largely to the analyst's control of the construction of the

design matrix. The elements of the design matrix may represent

either original or transformed values of the original independent

variable(s). Consequently, as illustrated in Section 111.2, different

transformations may be performed on different segments of the

independent variable(s). In addition, the advantages afforded

by employing orthogonal polynomials in regression analysis may

be realised by constructing the columns of the design matrix to be

orthogonal. Finally, with respect to the application to general

analysis of variance problems, the author feels that the proposed

procedure contained in this report could serve as a basis for a

computer progrm applicable for the analysis of variance of both

orthogonal and nonortholonal designs having quantitative and/or

qualitative factors in crossed and/or nested classifications.
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